Skip to main content

Which book will help me to make my own wireless network?

 


Wireless networking is one of those things that is easier to do in practice than it is to learn in theory. You will learn more by jumping in right ahead rather than poring through the books. But if you’re an absolute beginner you need to start somewhere. So I’ll give an overview of the practical aspects of wireless networks first and towards the end of my answer I’ll give suggestions from where you can learn the theory.


All wireless networks have three basic components



Antennas that send out wireless signals


A hardware that provides input signal to the antennas which it sends out wirelessly


An operating system that controls the hardware, which sends the input signals to antennas, which then sends it out wirelessly.


Now if you look at something as basic as a wifi router you’ll note that it has


Antennas (either external or on chip)


A chip to which those antennas are connected


An OS (that is accessible through the web admin panel) that controls the chip


So as a start you should try to read the specifications of wifi routers. What kind of chip does it use? What kind of antenna does it has? What kind of OS runs on it? Buy a cheap wifi router and tear it apart. Watch tear down videos on youtube. Try to absorb as much information from a complete working system as you can.


Later on you’ll come to an understanding that a wifi router is simply a specialized computer. At that point you should try to build a wifi computer of your own.


The concepts used in wifi base stations are exactly the same as the ones used in base stations for 5G and 4G networks. So all your skills are transferable.


By the way, next time you go out and keep an eye on the telephone towers you come across. Try to understand how the different components on the towers namely


The wire

The antennas

The base stations


are connected to each other. At this point you don’t have sufficient theory to fit all the pieces together. But when you start to learn theory, having seen things first hand is going to help you get a better grasp of underlying concepts.


Don’t try to learn everything all at once. Think of the subjects as separate courses that you take in college. Divide your time into “semesters” and try to get a hold of fundamental concepts first.


Learn the OSI model before you do anything else, so that you have a framework of how to arrange the different components of a wireless network in your mind. For me nothing has helped better than this video by drunk engineer. It’s 18 minutes long Check it out


https://youtu.be/3b_TAYtzuho?si=o-DB3bPcYFg3Dn12


At this point with the OSI model in place can you fit the telecom tower and all of its components in it?


What to study in theory?


In theory you want to learn all about antennas. How many different kinds there are? How do they work and what are their radiation patterns? 


Try to co-relate your learning with the on field deployments in mobile towers. At this point you should be asking questions like


Given the length of the antenna can I guess what frequencies it operates on?


Given the shape of the antenna can I guess its radiation pattern?


Given the placement of the antenna can I guess its coverage?


Some youtube channels that will help you learn more about antennas


Antenna and wave propagation playlist


https://www.youtube.com/playlist?list=PLgwJf8NK-2e7tzLIDL4aXUbtRFY3ykmkT


Antenna theory by NPTEL


https://www.youtube.com/playlist?list=PLzJaFd3A7DZsL9dZDCeA3ijHZwwBb6R8y


stan gibilisco’s videos (must watch)


https://www.youtube.com/user/stangibilisco/playlists


And tonnes and tonnes of videos by ham radio operators (search for them) along with DIY antenna builders, you can learn a lot by watching people build antennas. Build one yourself and see if you can improve reception in your home


And this great Practical Antenna Handbook for when you need it


https://archive.org/details/PracticalAntennaHandbook


Alt link


http://s1.nonlinear.ir/epublish/book/Practical_Antenna_Handbook_0071639586.pdf


Then you want to know as much as possible about the chips that provide a signal to it. Learn about motherboards. Building computer systems from components. If you’re a gamer it should be easy for you. If not, watch videos of people building gaming PCs. To build a base station for a wireless network you’ll just have to switch a few components. You’ll know them if you’ve taken the time to learn about chips. This guy is good


https://www.youtube.com/user/AwesomeSauceNews/playlists


WARNING: Remember you are here to learn about how to build wireless networks not to play games. The urge will be strong. Resist it ... if you can….


And finally know how to operate a network. That you can understand by playing around with a wifi router admin panel. Whatever is in there should be more than enough.


Some More Material


I have found sunny’s classroom videos invaluable in helping me learn as well as refresh software part of the wireless networks. You can see his playlists here 


https://www.youtube.com/user/sunnylearning/playlists . 



Be sure to check out the videos on modulation schemes.



Wireless Networking for the developing world has great book that helps with both concepts as well as the business aspects of running a network http://wndw.net/


Start your own wisp is a great community resource for both learning about practical operations as well as sourcing of materials https://startyourownisp.com/


Remember that the industry is moving towards IP based networks. From 4G onwards all cellular networks run on IP. So spending some time studying that will help a lot.


Obviously it is very easy for me to list out all of the things here. No doubt you’ll find yourself stuck in places. Feel free to ask questions on quora and the community will do its best to help you. Take things as slow as you can. It sounds overwhelming but it's not. Once you tune yourself in.


Building your own network


Now if you do things right, not only will you have the knowledge but also very valuable insights that will tell you what most internet companies are doing wrong. And that insight will help you start a successful wireless network of your own. As a final note don’t get washed away in industry trends.


73





Comments

Popular posts from this blog

Why does collapsing a bubble with a sound wave produce light?

My thoughts on a reddit discussion  https://www.reddit.com/r/AskPhysics/comments/1lwxxc3/comment/n2jx8gp/?utm_source=share&utm_medium=mweb3x&utm_name=mweb3xcss&utm_term=1&utm_content=share_button The collapsing of a bubble with sound wave leads to the emission of light in a phenomenon known as sonoluminescnce.  The bubble collapse is rapid and the gas inside the core doesn't have time to exchange heat with the surroundings as it's compressed rapidly leading to what is known as adiabatic compression.  This compression heats up the gas to very high temp. The exact temperatures are inferred from the spectrum of emission which is thought to be a blackbody. But some sophisticated models have also been developed that put the temp in the range 5000k-20000k some even higher.  There's also debate on whether the bubble emission spectrum is truly a blackbody or is it line emission or bremsstrahlung? Personally I think its a mix of all three. The pressures create...

Can you compress water and turn it solid?

A question asked on reddit https://www.reddit.com/r/askscience/comments/1n02vlg/ Yes and this has been experimentally confirmed. Shock compression of water has produced different forms of ice crystals.  SOME REFERENCES Experimental evidence for superionic water ice using shock compression https://www.nature.com/articles/s41567-017-0017-4 This particular form of ice melted at 5000K at 200Gpa.  https://www.llnl.gov/article/44081/first-experimental-evidence-superionic-ice An interesting tidbit from the research is in this paragraph  >Using diamond anvil cells (DAC), the team applied 2.5 GPa of pressure (25 thousand atmospheres) to pre-compress water into the room-temperature ice VII, a cubic crystalline form that is different from "ice-cube" hexagonal ice, in addition to being 60 percent denser than water at ambient pressure and temperature.  I'm not really sure at what temp this compression was performed but ice vii is known to exist at room temp at high enough pre...

Is there a future for materials science students in tribology?

My comments on a reddit discussion https://www.reddit.com/r/materials/comments/1nmooy5/comment/nfg6vub/ Tribology is a very important subfield of Mat sci and highly relevant anywhere there are moving parts. Like many other materials science domains its cross disciplinary and overlaps with automotive , aerospace ,manufacturing and even nano systems. I think its definitely worth studying and one should atleast  know about core concepts. From a purely research point of view the field is quite deep especially as it is being developed for nano systems and other emerging areas like triboluminescence. It does have a future. Wear is one of the major failure mechanism in materials and lots of resources are allocated to minimise it. Turbines,engine components, tyres ,cutting tools all suffer from wear and constant monitoring and refinement of process parameters is necessary.Many coatings are designed to reduce friction and wear Diamond like carbon films are cutting edge if you can build some...

What IMC 2025 Revealed About the State of Telecom

IMC 2025 lived up to its reputation as India's most anticipated communication event in India attracting big industry players—Intel,Qualcomm,Mediatek,Ericsson,Nokia along with research institutions and startups. All the 7 layers of the networking stack from the PHY to APPLICATION were well represented by various organisations.  Mobile operators serve as the face of the network but we often forget that they are powered by a long list of manufacturers and service providers. IMC gave them a platform to showcase their products and directly engage with customers.  5G is already here and very predictably there were talks around whether it has delivered on the promises it made. Speakers shared their thoughts and while the general consensus was that 5G did bring about somewhat faster speeds and a bit of lower latency the massive promises that it made especially around remote healthcare AR,VR and smart cities have all been forgotten.  mmwave is no where to be seen or even heard of....

WeWork India Sustainability Summit 2025 Tackling Technical Challenges in Green Building Innovation

I thank we work India for organising sustainability summit 2025 to help drive real change towards decarbonising the commercial real estate sector. I gained valuable insights from the esteemed speakers especially around policy and regulation in this space.  My own thoughts kept pulling me towards some of the more technical challenges which are quite significant.  The current strategy of making buildings sustainable focuses on reducing the carbon footprint of a building during its operation and construction. In the operational stage the challenge is to ensure that the building can run on green energy. Heating and cooling are the heaviest users of energy and thus obvious targets for decarbonisation.  Since buildings these days scale vertically it's impossible to cover the energy requirements from rooftop solar panels. Unless solar panels can be installed vertically along the facade, the surface area would be too limited to generate any significant power. The idea has been tr...

Unlocking the Potential of Carbon for Long-Distance Electrical Transmission

ABSTRACT: We present a technique to manufacture large scale carbon based conductors for transmission of electrical energy over continental scale distances. We start by identifying precursors that could be used for production processes.We review the current manufacturing techniques of producing carbon based fibers and explain why certain precursors have dominated carbon materials industry. We identify methods that can be used to increase the yield through alternative precursors.We put forward a theory of why carbon conductors have less conductivity than metals and what can be done to improve it. Finally we postulate that with cheaper production methods even if carbon based conductors are 10 times less effective than poor metallic conductors like steel, they can still outperform them in High Voltage transmission lines if cheap manufacturing techniques could be developed.  INTRODUCTION: Copper and in certain very specific applications aluminium & silicon steels dominate when it co...

Do electrons really flow as a beam in cathode ray tubes?

  Abstract: It is generally well accepted that a beam of electrons flow from cathode to anode in a cathode ray tube. Taking pressure  data from a variety of sources from CRT manufacturers’  data sheets to engineering documents of large hadron colliders we show through calculations that there is enough residual gas in these devices to form a conducting path from anode to cathode due to plasma formation. When high voltages are applied at the anode the gas is ionized and becomes a plasma forming a ‘wire’ between the two electrodes that causes conduction of energy.  The objective of this brief note is to encourage scientists and engineers to re-investigate commonly accepted beliefs about vacuum tubes and develop new knowledge that can revitalize the field especially at a time when nano scaled vacuum channel transistors are being envisioned.  Most vacuum tubes have  operating pressures in the ultra high vacuum range. This is true for cathode ray tubes, vacuum tu...

Low energy fabrication of a high strength layered ceramic composite for high temperature oxidative environments

High temperature materials are required in various applications: in metallurgy, for making combustion chambers of internal combustion engines ,for the body of Stirling engines, for wall material of nuclear fusion reactors, for the body of Jet engines among a few.  For such applications we need materials that can retain their strengths at elevated temperatures and can survive in an oxidative environment  It is the second requirement which is more stringent. Although numerous metallic alloys have been synthesized that can sustain both high temperatures and oxygen attack they require complex processing steps  On the other hand ceramics are good at resisting both oxygen attacks and high temperatures and are relatively simpler to fabricate but are limited by massive amounts of energy required. For example c/sic composites will perform well in demanding high temperature oxidative environments but require vacuum to be manufactured. The acheson process for the formation of sic is...

Force calculations on electron in vacuum tubes

ABSTRACT A claim was made in the paper titled “Do electrons really flow as a beam in cathode ray tubes? ” where we asserted that electrons remain near the cathode surface during the operation of CRT. Here we do force calculations on electrons by estimating the debye length of electrons emitted after thermionic emission and show that under given applied voltages if electrons are placed at debye length they are sufficiently far away from the cathode surface to be accelerated towards it. Debye length, while typically used to measure charge screening distance in plasmas and electrolytes, can also be used to estimate the distance of emitted electrons from the cathode surface. In the same way debye length is used to calculate the thickness of an electrical double layer in which the surface charge and charge on inner helmholtz plane are immobile & the charges on outer helmholtz plane are mobile we can model emitted electrons as mobile charges & image charges distributed on the cathode...

Manufacturing technique for layered carbon /ceramic composite for use in high temperature oxidative environment

We previously described a layered carbon glass material system that is different from c/sic , c/sio2 matrix composites in that it consists of a distinct C/C phase which is coated by an sio2 layer.  https://akshatjiwannotes.blogspot.com/2024/12/low-energy-fabrication-of-high-strength.html This material system presents a distinct advantage in a high temperature oxidative atmosphere as the C/C matrix is protected by the oxidation resistant glass shield. Such a material can supposedly be synthesized in an open oxidative atmosphere. In this short note we will answer some questions such as  What manufacturing technique will be used?  How can silica particles be sintered on the substrate? How can adhesion between sintered particles and carbon substrate be ensured? What, if any ,sintering aids will be used? What would be the mechanical properties of the composite so formed?  What level of heat treatment will be required? To make the composite only the minimum amount of heat ...