Skip to main content

In Bluetooth tech, which of the two decides the distance that one can get unhindered transmission, a transmitter or receiver?

Bluetooth is a form of wireless communication. In wireless connections the component responsible for establishing the physical layer (the part over which actual data exchange takes place) is the antenna.

The distance to which the signal can travel depends upon

The construction of the antenna. Its geometry,the materials it's made of. The conditions in which it operates

The placement of the antenna. Whether the signal it generates has to pass through obstacles or there is a clear line of sight.

Now the thing about antennas is that they are reciprocal. This means that If an antenna is a good transmitter (whatever parameters you choose to define good) it will also be a good receiver(on the same parameters).

But even when you use similar antennas the operating conditions of the transmitter and receiver can be different leading to a dismilliar performance between two devices.

Now coming to your question. It's not so much whether the transmitter or the receiver that decides the distance. It's about how good can they work together.

Because mobile devices (or other embedded devices like USB Bluetooth) have inbuilt antennas the distance to which they can transmit is limited.

Now if you use device to device communication so that you have two embedded antennas due to the principle of reciprocity both transmission and reception abilities are limited and hence the distance to which the link can work is small. This is why they are classified as PAN ,personal area networks.

Add to it the responsivity of the chips (how sensitive they are,more sensitivity allows them to gather faint signals and less sensitivity makes them neglect it) and you have got a combination that limits the effective range.



Comments

Popular posts from this blog

Why does collapsing a bubble with a sound wave produce light?

My thoughts on a reddit discussion  https://www.reddit.com/r/AskPhysics/comments/1lwxxc3/comment/n2jx8gp/?utm_source=share&utm_medium=mweb3x&utm_name=mweb3xcss&utm_term=1&utm_content=share_button The collapsing of a bubble with sound wave leads to the emission of light in a phenomenon known as sonoluminescnce.  The bubble collapse is rapid and the gas inside the core doesn't have time to exchange heat with the surroundings as it's compressed rapidly leading to what is known as adiabatic compression.  This compression heats up the gas to very high temp. The exact temperatures are inferred from the spectrum of emission which is thought to be a blackbody. But some sophisticated models have also been developed that put the temp in the range 5000k-20000k some even higher.  There's also debate on whether the bubble emission spectrum is truly a blackbody or is it line emission or bremsstrahlung? Personally I think its a mix of all three. The pressures create...

WeWork India Sustainability Summit 2025 Tackling Technical Challenges in Green Building Innovation

I thank we work India for organising sustainability summit 2025 to help drive real change towards decarbonising the commercial real estate sector. I gained valuable insights from the esteemed speakers especially around policy and regulation in this space.  My own thoughts kept pulling me towards some of the more technical challenges which are quite significant.  The current strategy of making buildings sustainable focuses on reducing the carbon footprint of a building during its operation and construction. In the operational stage the challenge is to ensure that the building can run on green energy. Heating and cooling are the heaviest users of energy and thus obvious targets for decarbonisation.  Since buildings these days scale vertically it's impossible to cover the energy requirements from rooftop solar panels. Unless solar panels can be installed vertically along the facade, the surface area would be too limited to generate any significant power. The idea has been tr...

Can you compress water and turn it solid?

A question asked on reddit https://www.reddit.com/r/askscience/comments/1n02vlg/ Yes and this has been experimentally confirmed. Shock compression of water has produced different forms of ice crystals.  SOME REFERENCES Experimental evidence for superionic water ice using shock compression https://www.nature.com/articles/s41567-017-0017-4 This particular form of ice melted at 5000K at 200Gpa.  https://www.llnl.gov/article/44081/first-experimental-evidence-superionic-ice An interesting tidbit from the research is in this paragraph  >Using diamond anvil cells (DAC), the team applied 2.5 GPa of pressure (25 thousand atmospheres) to pre-compress water into the room-temperature ice VII, a cubic crystalline form that is different from "ice-cube" hexagonal ice, in addition to being 60 percent denser than water at ambient pressure and temperature.  I'm not really sure at what temp this compression was performed but ice vii is known to exist at room temp at high enough pre...

Steel composites integrating diamonds and carbon nanotubes

Incorporating hard materials like diamond or carbon nanotubes (CNTs) into steel presents unique challenges, particularly when using traditional melt processing techniques. Diamond, for example, is extremely difficult to integrate into steel via melting due to its thermal instability. However, diamond is routinely embedded in steel surfaces for cutting applications. In the electronics industry, steel wires coated with diamond are used to slice silicon crystals into thin wafers. Two main techniques are commonly employed for embedding diamond in metals: 1. Electroplating: Diamond powder is suspended in a metal ion electrolyte, usually nickel. When an electric current is applied, nickel deposits on the metal wire, trapping the diamond particles in place. 2. Sintering: For more demanding cutting tools, diamond can be embedded on metal surfaces using sintering, which fuses the particles to the substrate at high temperatures without melting the metal. Similar challenges exist when attempting ...

Is there a future for materials science students in tribology?

My comments on a reddit discussion https://www.reddit.com/r/materials/comments/1nmooy5/comment/nfg6vub/ Tribology is a very important subfield of Mat sci and highly relevant anywhere there are moving parts. Like many other materials science domains its cross disciplinary and overlaps with automotive , aerospace ,manufacturing and even nano systems. I think its definitely worth studying and one should atleast  know about core concepts. From a purely research point of view the field is quite deep especially as it is being developed for nano systems and other emerging areas like triboluminescence. It does have a future. Wear is one of the major failure mechanism in materials and lots of resources are allocated to minimise it. Turbines,engine components, tyres ,cutting tools all suffer from wear and constant monitoring and refinement of process parameters is necessary.Many coatings are designed to reduce friction and wear Diamond like carbon films are cutting edge if you can build some...

What IMC 2025 Revealed About the State of Telecom

IMC 2025 lived up to its reputation as India's most anticipated communication event attracting big industry players—Intel,Qualcomm,Mediatek,Ericsson,Nokia along with research institutions and startups. All the 7 layers of the networking stack from the PHY to APPLICATION were well represented by various organisations.  Mobile operators serve as the face of the network but we often forget that they are powered by a long list of manufacturers and service providers. IMC gave them a platform to showcase their products and directly engage with customers.  5G is already here and very predictably there were talks around whether it has delivered on the promises it made. Speakers shared their thoughts and while the general consensus was that 5G did bring about somewhat faster speeds and a bit of lower latency the massive promises that it made especially around remote healthcare AR,VR and smart cities have all been forgotten.  mmwave is no where to be seen or even heard of. It's qui...

Unlocking the Potential of Carbon for Long-Distance Electrical Transmission

ABSTRACT: We present a technique to manufacture large scale carbon based conductors for transmission of electrical energy over continental scale distances. We start by identifying precursors that could be used for production processes.We review the current manufacturing techniques of producing carbon based fibers and explain why certain precursors have dominated carbon materials industry. We identify methods that can be used to increase the yield through alternative precursors.We put forward a theory of why carbon conductors have less conductivity than metals and what can be done to improve it. Finally we postulate that with cheaper production methods even if carbon based conductors are 10 times less effective than poor metallic conductors like steel, they can still outperform them in High Voltage transmission lines if cheap manufacturing techniques could be developed.  INTRODUCTION: Copper and in certain very specific applications aluminium & silicon steels dominate when it co...

Low energy fabrication of a high strength layered ceramic composite for high temperature oxidative environments

High temperature materials are required in various applications: in metallurgy, for making combustion chambers of internal combustion engines ,for the body of Stirling engines, for wall material of nuclear fusion reactors, for the body of Jet engines among a few.  For such applications we need materials that can retain their strengths at elevated temperatures and can survive in an oxidative environment  It is the second requirement which is more stringent. Although numerous metallic alloys have been synthesized that can sustain both high temperatures and oxygen attack they require complex processing steps  On the other hand ceramics are good at resisting both oxygen attacks and high temperatures and are relatively simpler to fabricate but are limited by massive amounts of energy required. For example c/sic composites will perform well in demanding high temperature oxidative environments but require vacuum to be manufactured. The acheson process for the formation of sic is...

Do electrons really flow as a beam in cathode ray tubes?

  Abstract: It is generally well accepted that a beam of electrons flow from cathode to anode in a cathode ray tube. Taking pressure  data from a variety of sources from CRT manufacturers’  data sheets to engineering documents of large hadron colliders we show through calculations that there is enough residual gas in these devices to form a conducting path from anode to cathode due to plasma formation. When high voltages are applied at the anode the gas is ionized and becomes a plasma forming a ‘wire’ between the two electrodes that causes conduction of energy.  The objective of this brief note is to encourage scientists and engineers to re-investigate commonly accepted beliefs about vacuum tubes and develop new knowledge that can revitalize the field especially at a time when nano scaled vacuum channel transistors are being envisioned.  Most vacuum tubes have  operating pressures in the ultra high vacuum range. This is true for cathode ray tubes, vacuum tu...

Perspective from EU Research & Innovation (R&I) Days 2025

I thank the European Commission for organising European Research & Innovation (R&I) Days 2025 and giving me a chance to participate in the event discussing the future of European research. Europe has had a long and storied tradition of science with philosophers like Locke,Hobbes,Descartes,Spinoza laying the groundwork for a scientific revolution producing the finest scientists who pushed the boundaries of human knowledge ,ushered the industrial revolution and birthed the modern world. Yet today the EU finds itself at crossroads struggling to retain talent and capitalise on its inventions. Horizon Europe defines key enabling technologies that could propel the EU far ahead of its competitors. Past Records show that Europe has the capability to do it. Its achievements in electronics,semiconductors,wind energy and development of advanced composites like GLARE are a testament to its enterprising citizens. Europe has made strong contributions in open source software and while some of...