Skip to main content

Can concentrated solar energy be used in materials manufacturing? How?

 Absolutely. Concentrated solar power (CSP) can be used to synthesize new materials especially those which are formed at high temperatures. It can be used for sintering,melting,vapor deposition processes. In short any manufacturing process or step that uses heat can benefit from CSP. We are talking about temperatures that easily cross 1500C with a concentrating lens and some designs even crossing 2000 degrees celcius.


CSP lens is just about as efficient, when all variables are factored in, as an industrial laser. And because sun is a broadband energy source,as opposed to an industrial laser which usually radiates at only one wavelength CSP has an added advantage of activating surface under treatment. There's a greater chance for the material to absorb high energy solar wavelengths better than laser where it has to work with only one wavelength,usually lower energy. This leads to an improved energy efficiency.


Although this idea is not new it has gained importance due to the current impetus on finding clean manufacturing technologies.


The research paper "Gemma Herranz and Gloria P. Rodríguez (2010). Uses of Concentrated Solar Energy in Materials Science, Solar Energy, Radu D Rugescu (Ed.), ISBN: 978-953-307-052-0, InTech, Available from: http://www.intechopen.com/books/solar-energy/uses-of-concentrated-solar-energy-in-materials-science" goes into detail about how concentrated solar power can be used for high temprature material synthesis.


"Tremendous advances have been made in the development of new materials capable of working under extreme conditions possible due to the development of Materials Surface Engineering. The utilisation of techniques based on high density energy beams (laser, plasma, electron beam or arc lamps) in surface modification and metallic material treatment allow for the creation of non-equilibrium microstructures which can be used to manufacture materials with higher resistance to corrosion, high temperature oxidation and wear, among other properties. All of these techniques suffer from low overall energy efficiency. While it is true that the energy density obtained through a laser is three to four magnitudes greater than that which is obtained by solar energy concentration facilities, Flamant (Flamant et al. 1999) have carried out a comparison of the overall energy and the capital costs of laser, plasma and solar systems and came to the conclusion that solar concentrating systems offer unique opportunities for high temperature transformation and creation of materials from both the technical and economic points of view. The benifits are not limited to synthesis alone. The use of concentrated solar energy could also lower the cost of high temperature experiments.


Combined with the wide array of superficial modifications that can be carried out at solar facilities, there are numerous other advantages to using this energy source. The growing (and increasingly necessary) trend towards the use of renewable clean energy sources, which do not contribute to the progressive deterioration of the environment, is one compelling argument. Solar furnaces are also excellent research tools for increasing scientific knowledge about the mechanisms involved in the processes generated at high temperatures under non-equilibrium conditions.


If, in addition, the solar concentration is carried out using a Fresnel lens, several other positive factors come into play: facility costs are lowered, adjustments and modifications are easy to carry out, overall costs are kept low, and the structure is easy to build, which makes the use of this kind of lens highly attractive for research, given its possible industrial applications. These are the reasons that justify the scientific community's growing interest in researching the possible uses of highly concentrated solar energy in the field of materials. But this interest is not new. At the end of the 18th century, Lavoisier (Garg, 1987) constructed a concentrator based on a lens system designed to achieve the melting point temperature for platinum (1773ºC). But it was not until the twentieth century that the full range of possibilities of this energy source and its applications to the processing and modification of materials started to be explored in depth. The first great inventor was Felix Trombe who transformed German parabolic searchlights used for anti-aerial defence during WW II into a solar concentrator. Using this device he was able to obtain the high temperatures needed to carry out various chemical and metallurgic experiments involving the fusion and purification of ceramics (Chaudron 1973). In 1949 he was able to melt brass resting in the focal area of a double reflection solar furnace which he constructed using a heliostat or flat mirror and a parabolic concentrator (50kW Solar Furnace of Mont-Louis, France). But his greatest achievement was the construction of the largest solar furnace that currently exists in the world, which can generate 100kW of power. The “Felix Trombe Solar Furnace Centre” is part of the Institute of Processes, Materials and Solar Energy (PROMES-CNRS) and is a leader in research on materials and processes. Another of the main figures in the use of solar energy in the materials field and specifically in the treatment and surface modification of metallic materials is Prof. A.J. Vázquez of CENIM-CSIC. His research in this field started at the beginning of the 1990™s, using the facilities at the Almería Solar Plant (Vazquez & Damborenea, 1990). His role in encouraging different research groups carrying out work in material science to experiment with this new solar technology has also been very important. The initial studies with CSE at the ETSII-UCLM involved characterising a Fresnel lens with a diameter of 900 mm, for its use as a solar concentrator (Ferriere et al. 2004). The characterisation indicated that the lens concentrated direct solar radiation by 2644 times, which meant that on a clear day with an irradiance of 1kW/m2 the density of the focal area would be 264.4 W/cm2 . This value is much lower than this obtained with other techniques based on high density beams, but is sufficiently high to carry out a large number of processes on the materials, and even a fusion of their surfaces.


The investigations carried out to date include processes involving the sintering of metallic alloys, surface treatment of steel and cast irons, cladding of stainless steel and intermetallic compound, high temperature nitriding of titanium alloys and NiAl intermetallic coating processing through a SHS reaction (Self-propagating high temperature synthesis). In the studies we have conducted to date we have seen a clear activating effect in CSE which results in treatment times that are shorter, and which add to the efficiency of the process as well as increase in the quality of the modified surface. This is due to, among other factors, the properties of solar radiation. The visible solar spectrum extends from the wavelengths between 400 and 700 nm where most metals present greater absorbance, making the processes more energy efficient. Although the use of solar energy for industrial applications suffers a disadvantage due to its intermittent nature, it should be noted that according to Gineste (Gineste et al. 1999) in Odeillo where the Felix Trombe Solar Furnace Centre is located, the peak value of the direct normal irradiation is 1100 W.m-2 and it exceeds 700 W.m-2 during 1600 hours per year and 1000 W.m-2 during only 200 hours per year. In Ciudad Real, Spain, at latitude 38°, the availability of the solar energy reported by the Spanish “Instituto Nacional de Meteorologia” (Font Tullot, 1984), is 11% higher than in Odeillo. Direct solar radiation measured with a pyrheliometer between 19 June and 31 August, 2009, at the ETSII-UCLM (Ciudad Real, Spain) registered values higher than 950W.m-2 for 20% of the days and higher than 800 W.m-2 for 97% of the days. The peak value has been attained in this period was 976 W.cm-2 .


Concentrated solar energy (CSE) represents an alternative to other types of energy beams for treating and modifying the surfaces of metallic materials. This technique is breaking new ground in the use non-contaminating and environmentally acceptable technologies for processes involving the surface modification of metallic materials at high temperatures. It is also increasing scientific knowledge about the mechanisms involved when processing materials at high temperatures under non-equilibrium conditions. In the studies carried out to date, it has been observed that CSE has a clear activator effect, which results both in shorter treatment times and therefore, in increased processing efficiency, and in improved quality of the modified surface. For high-temperature processes, concentrated solar energy has shown to be highly energy efficient and also competitive in terms of cost." It is especially suitable for developing countries like India, which has a high number of sunny days per year. Question is can we develop industrial applications for concentrated solar technology, especially now when energy-efficiency and environmental preservation have become top priorities?




#engineering #materials #energy





.

Comments

Popular posts from this blog

Why does collapsing a bubble with a sound wave produce light?

My thoughts on a reddit discussion  https://www.reddit.com/r/AskPhysics/comments/1lwxxc3/comment/n2jx8gp/?utm_source=share&utm_medium=mweb3x&utm_name=mweb3xcss&utm_term=1&utm_content=share_button The collapsing of a bubble with sound wave leads to the emission of light in a phenomenon known as sonoluminescnce.  The bubble collapse is rapid and the gas inside the core doesn't have time to exchange heat with the surroundings as it's compressed rapidly leading to what is known as adiabatic compression.  This compression heats up the gas to very high temp. The exact temperatures are inferred from the spectrum of emission which is thought to be a blackbody. But some sophisticated models have also been developed that put the temp in the range 5000k-20000k some even higher.  There's also debate on whether the bubble emission spectrum is truly a blackbody or is it line emission or bremsstrahlung? Personally I think its a mix of all three. The pressures create...

WeWork India Sustainability Summit 2025 Tackling Technical Challenges in Green Building Innovation

I thank we work India for organising sustainability summit 2025 to help drive real change towards decarbonising the commercial real estate sector. I gained valuable insights from the esteemed speakers especially around policy and regulation in this space.  My own thoughts kept pulling me towards some of the more technical challenges which are quite significant.  The current strategy of making buildings sustainable focuses on reducing the carbon footprint of a building during its operation and construction. In the operational stage the challenge is to ensure that the building can run on green energy. Heating and cooling are the heaviest users of energy and thus obvious targets for decarbonisation.  Since buildings these days scale vertically it's impossible to cover the energy requirements from rooftop solar panels. Unless solar panels can be installed vertically along the facade, the surface area would be too limited to generate any significant power. The idea has been tr...

Can you compress water and turn it solid?

A question asked on reddit https://www.reddit.com/r/askscience/comments/1n02vlg/ Yes and this has been experimentally confirmed. Shock compression of water has produced different forms of ice crystals.  SOME REFERENCES Experimental evidence for superionic water ice using shock compression https://www.nature.com/articles/s41567-017-0017-4 This particular form of ice melted at 5000K at 200Gpa.  https://www.llnl.gov/article/44081/first-experimental-evidence-superionic-ice An interesting tidbit from the research is in this paragraph  >Using diamond anvil cells (DAC), the team applied 2.5 GPa of pressure (25 thousand atmospheres) to pre-compress water into the room-temperature ice VII, a cubic crystalline form that is different from "ice-cube" hexagonal ice, in addition to being 60 percent denser than water at ambient pressure and temperature.  I'm not really sure at what temp this compression was performed but ice vii is known to exist at room temp at high enough pre...

Steel composites integrating diamonds and carbon nanotubes

Incorporating hard materials like diamond or carbon nanotubes (CNTs) into steel presents unique challenges, particularly when using traditional melt processing techniques. Diamond, for example, is extremely difficult to integrate into steel via melting due to its thermal instability. However, diamond is routinely embedded in steel surfaces for cutting applications. In the electronics industry, steel wires coated with diamond are used to slice silicon crystals into thin wafers. Two main techniques are commonly employed for embedding diamond in metals: 1. Electroplating: Diamond powder is suspended in a metal ion electrolyte, usually nickel. When an electric current is applied, nickel deposits on the metal wire, trapping the diamond particles in place. 2. Sintering: For more demanding cutting tools, diamond can be embedded on metal surfaces using sintering, which fuses the particles to the substrate at high temperatures without melting the metal. Similar challenges exist when attempting ...

Is there a future for materials science students in tribology?

My comments on a reddit discussion https://www.reddit.com/r/materials/comments/1nmooy5/comment/nfg6vub/ Tribology is a very important subfield of Mat sci and highly relevant anywhere there are moving parts. Like many other materials science domains its cross disciplinary and overlaps with automotive , aerospace ,manufacturing and even nano systems. I think its definitely worth studying and one should atleast  know about core concepts. From a purely research point of view the field is quite deep especially as it is being developed for nano systems and other emerging areas like triboluminescence. It does have a future. Wear is one of the major failure mechanism in materials and lots of resources are allocated to minimise it. Turbines,engine components, tyres ,cutting tools all suffer from wear and constant monitoring and refinement of process parameters is necessary.Many coatings are designed to reduce friction and wear Diamond like carbon films are cutting edge if you can build some...

What IMC 2025 Revealed About the State of Telecom

IMC 2025 lived up to its reputation as India's most anticipated communication event attracting big industry players—Intel,Qualcomm,Mediatek,Ericsson,Nokia along with research institutions and startups. All the 7 layers of the networking stack from the PHY to APPLICATION were well represented by various organisations.  Mobile operators serve as the face of the network but we often forget that they are powered by a long list of manufacturers and service providers. IMC gave them a platform to showcase their products and directly engage with customers.  5G is already here and very predictably there were talks around whether it has delivered on the promises it made. Speakers shared their thoughts and while the general consensus was that 5G did bring about somewhat faster speeds and a bit of lower latency the massive promises that it made especially around remote healthcare AR,VR and smart cities have all been forgotten.  mmwave is no where to be seen or even heard of. It's qui...

Perspective from EU Research & Innovation (R&I) Days 2025

I thank the European Commission for organising European Research & Innovation (R&I) Days 2025 and giving me a chance to participate in the event discussing the future of European research. Europe has had a long and storied tradition of science with philosophers like Locke,Hobbes,Descartes,Spinoza laying the groundwork for a scientific revolution producing the finest scientists who pushed the boundaries of human knowledge ,ushered the industrial revolution and birthed the modern world. Yet today the EU finds itself at crossroads struggling to retain talent and capitalise on its inventions. Horizon Europe defines key enabling technologies that could propel the EU far ahead of its competitors. Past Records show that Europe has the capability to do it. Its achievements in electronics,semiconductors,wind energy and development of advanced composites like GLARE are a testament to its enterprising citizens. Europe has made strong contributions in open source software and while some of...

Remarks on the space policy conference 2025

  Happy to have participated in the space policy conference, 2025 held in New Delhi. The discussion revolved around spectrum allocation and the use of satellites in meeting the communication needs of tomorrow. The view among the speakers was pragmatic emphasising that while satellite communication will play an important part in the future of networking the role of terrestrial telecommunication will not be diminished especially as new advancements in fiber optics are happening rapidly. I concurred. While wireless communication remains the most important application of space technology I wondered if there is more to it? Can space policy look beyond weather,defense & telecommunication? Not too long ago NASA was doing just that. There was a period of rapid development in materials science ,cryogenics & electronics that influenced industries beyond the space sector. That era was characterised by industrial cross collaboration. New composites were developed ,new synthesis techniq...

A Celebration of India's Electronic Component Manufacturing Scheme milestones: Pairing policy incentives with turbulent Innovation

A Celebration of India's Electronic Component Manufacturing Scheme milestones: Pairing policy incentives with turbulent Innovation 17 Nov 2025 After the incredible success of semicon India this September, India cellular and electronics association organised a lunch celebrating the success of Electronic components and manufacturing scheme at the Taj in New Delhi.  Minister for Electronics & IT Ashwini Vaishnaw, was joined by Minister of State for Electronics & IT Jitin Prasad , Secretary S Krishnan, Secretary Sushil Pal and various industry leaders who are helping to build a semiconductor manufacturing ecosystem in India. It was a unique opportunity for me to observe the collective decision making that goes into developing policies shaping the industry. Through exchange of ideas the policy makers have mapped in great detail the components that need to be in place for the initiative to succeed. The list was quite comprehensive including PCBs, oscillators, lith...

Interdependence and strategic autonomy in a world that may no longer cooperate

9 Dec 2025  At the global boardroom organised by the financial times I got the opportunity to learn from decision makers & understand their approach to deal with a world that is facing constant disruption and where economic policy, geopolitics, technology, energy, and leadership are increasingly intertwined.  FT brought in a diverse set of speakers: Christine Lagarde — President, European Central Bank,Akash Palkhiwala —COO, Qualcomm,Eimear Bonner — CFO, Chevron Corporation,Janet Henry — Global Chief Economist, HSBC, Izabella Teixeira — Member, International Advisory Board & Former Brazilian Environment Minister ,Antti Häkkänen — Minister of Defence, Finland , Oana-Silvia Țoiu — Minister of Foreign Affairs, Romania, Lesley O’Connor — Founder & Executive Chair, SupergridEurope among others to speak on themes spanning economics, geopolitics, technology, energy, and governance.  Today in this interconnected world the decisions that one nation takes ...