Skip to main content

Electrical and mechanical work

Mechanical work is good for systems where large power but imprecise operation is needed. There is not much precision in rotation of a fan or working of a pump but they consume a lot of energy.


Electrical work on the other hand is invaluable where precision is needed on an electronic scale. LED, electronic circuits ,TVs, computers can't directly work on heat you need electrical energy for them.


Similarly all modern communication systems are useless without electricity. it is for these systems we need to ensure a continuous sustainable electrical supply.But here too heat has a role to play 


if you think about it most of the energy generated today is by steam turbines at around 40 to 60% efficiency. we can generate electrical energy from stored thermal energy that matches the efficiency of turbines and transport them through the grid via existing infrastructure. The only difference being the heat source that was chemical ,nuclear is now stored heat. 


The systems( battery ,engine, heat exchangers) that we develop for use in mechanical work can be used in generation of electrical energy just that they need to be coupled to an AC or DC generator. There are trade offs to be made in the choice of generator as well but the important thing is that we can achieve stable efficiency that matches the efficiencies of nuclear /steam power plants .This is better than what solar cells can do at the moment.


Does it make sense to store electrical energy as heat?


In some very specific cases it does. 


wind always produces mechanical work that can be transformed to electrical energy. Either this energy can be transmitted for immediate use or stored in a battery.


 As good as lithium-ion batteries are ,they are still expensive in terms of money and materials used plus their lifetimes are short as compared to what thermal storage may offer.


 In such a scenario it indeed make sense to convert generated electrical energy and store it as heat and then reuse it when necessary using engines, heat exchangers and electrical generators. 


 This set up is way more useful in cold environments where heat is necessary just to survive and wind is dominant renewable source available 


This would be somewhere around 20% efficiency about the same as what solar is today.


Two important components for this to work and efficient external heat engine and a  thermal energy storage device


Mechanical work


Some purely mechanical devices include fans ,coolers, AC, refrigerators, pumps ,Motors, engines, automobiles ,cooling ,heating, transport and  pumping.


All of the devices performing mechanical work can be made using heat as the energy source and an engine as a transducer converting heat energy into mechanical work. 


Advantage of this approach is that it simplifies the materials used for devices you don't then need conductive metals to make devices performing mechanical work .They can be made using polymers. 


Additionally heat can be stored cheaply in large quantities for months on end making off grid approach far more feasible then electrical energy generation and storage. 


More importantly instead of entirely replacing the grid, heat + engine combo can be used to tackle two most important requirements in a home /building: heating and cooling.


 This helps us sustain the most energy demanding applications while reducing the burden on the grid and taking a big step forward towards sustainable energy use.



It is important to distinguish between purely electrical and purely mechanical work to understand what kind of energy input a device needs. 


Most of the electro mechanical devices in use today are actually devices that do mechanical work but they just  so happen to use electrical energy. The reason being that electrical energy can be transported to long distances making generation at a distant, more favorable, location possible.


This is great for connected systems like a city where a centralised generation facility can distribute energy to people's homes via grid.


Electricity transmits easily but is difficult to store.Batteries are expensive and complicated devices. More importantly though electricity is not really necessary to drive mechanical systems the only reason for its use is its ease of transmission. 


On the other hand It's not only possible to concentrate energy directly from sunlight and store it but also store electrical energy as heat from wind,hydro sources ,if that heat will then be used to perform mechanical work. 


Dividing the work into purely electrical & purely mechanical helps us make better use of energy that is available to us. 



Could stored heat be used for cooking? 

hot air cooktops perhaps?


Comments

Popular posts from this blog

Why does collapsing a bubble with a sound wave produce light?

My thoughts on a reddit discussion  https://www.reddit.com/r/AskPhysics/comments/1lwxxc3/comment/n2jx8gp/?utm_source=share&utm_medium=mweb3x&utm_name=mweb3xcss&utm_term=1&utm_content=share_button The collapsing of a bubble with sound wave leads to the emission of light in a phenomenon known as sonoluminescnce.  The bubble collapse is rapid and the gas inside the core doesn't have time to exchange heat with the surroundings as it's compressed rapidly leading to what is known as adiabatic compression.  This compression heats up the gas to very high temp. The exact temperatures are inferred from the spectrum of emission which is thought to be a blackbody. But some sophisticated models have also been developed that put the temp in the range 5000k-20000k some even higher.  There's also debate on whether the bubble emission spectrum is truly a blackbody or is it line emission or bremsstrahlung? Personally I think its a mix of all three. The pressures create...

WeWork India Sustainability Summit 2025 Tackling Technical Challenges in Green Building Innovation

I thank we work India for organising sustainability summit 2025 to help drive real change towards decarbonising the commercial real estate sector. I gained valuable insights from the esteemed speakers especially around policy and regulation in this space.  My own thoughts kept pulling me towards some of the more technical challenges which are quite significant.  The current strategy of making buildings sustainable focuses on reducing the carbon footprint of a building during its operation and construction. In the operational stage the challenge is to ensure that the building can run on green energy. Heating and cooling are the heaviest users of energy and thus obvious targets for decarbonisation.  Since buildings these days scale vertically it's impossible to cover the energy requirements from rooftop solar panels. Unless solar panels can be installed vertically along the facade, the surface area would be too limited to generate any significant power. The idea has been tr...

Can you compress water and turn it solid?

A question asked on reddit https://www.reddit.com/r/askscience/comments/1n02vlg/ Yes and this has been experimentally confirmed. Shock compression of water has produced different forms of ice crystals.  SOME REFERENCES Experimental evidence for superionic water ice using shock compression https://www.nature.com/articles/s41567-017-0017-4 This particular form of ice melted at 5000K at 200Gpa.  https://www.llnl.gov/article/44081/first-experimental-evidence-superionic-ice An interesting tidbit from the research is in this paragraph  >Using diamond anvil cells (DAC), the team applied 2.5 GPa of pressure (25 thousand atmospheres) to pre-compress water into the room-temperature ice VII, a cubic crystalline form that is different from "ice-cube" hexagonal ice, in addition to being 60 percent denser than water at ambient pressure and temperature.  I'm not really sure at what temp this compression was performed but ice vii is known to exist at room temp at high enough pre...

Is there a future for materials science students in tribology?

My comments on a reddit discussion https://www.reddit.com/r/materials/comments/1nmooy5/comment/nfg6vub/ Tribology is a very important subfield of Mat sci and highly relevant anywhere there are moving parts. Like many other materials science domains its cross disciplinary and overlaps with automotive , aerospace ,manufacturing and even nano systems. I think its definitely worth studying and one should atleast  know about core concepts. From a purely research point of view the field is quite deep especially as it is being developed for nano systems and other emerging areas like triboluminescence. It does have a future. Wear is one of the major failure mechanism in materials and lots of resources are allocated to minimise it. Turbines,engine components, tyres ,cutting tools all suffer from wear and constant monitoring and refinement of process parameters is necessary.Many coatings are designed to reduce friction and wear Diamond like carbon films are cutting edge if you can build some...

Steel composites integrating diamonds and carbon nanotubes

Incorporating hard materials like diamond or carbon nanotubes (CNTs) into steel presents unique challenges, particularly when using traditional melt processing techniques. Diamond, for example, is extremely difficult to integrate into steel via melting due to its thermal instability. However, diamond is routinely embedded in steel surfaces for cutting applications. In the electronics industry, steel wires coated with diamond are used to slice silicon crystals into thin wafers. Two main techniques are commonly employed for embedding diamond in metals: 1. Electroplating: Diamond powder is suspended in a metal ion electrolyte, usually nickel. When an electric current is applied, nickel deposits on the metal wire, trapping the diamond particles in place. 2. Sintering: For more demanding cutting tools, diamond can be embedded on metal surfaces using sintering, which fuses the particles to the substrate at high temperatures without melting the metal. Similar challenges exist when attempting ...

What IMC 2025 Revealed About the State of Telecom

IMC 2025 lived up to its reputation as India's most anticipated communication event attracting big industry players—Intel,Qualcomm,Mediatek,Ericsson,Nokia along with research institutions and startups. All the 7 layers of the networking stack from the PHY to APPLICATION were well represented by various organisations.  Mobile operators serve as the face of the network but we often forget that they are powered by a long list of manufacturers and service providers. IMC gave them a platform to showcase their products and directly engage with customers.  5G is already here and very predictably there were talks around whether it has delivered on the promises it made. Speakers shared their thoughts and while the general consensus was that 5G did bring about somewhat faster speeds and a bit of lower latency the massive promises that it made especially around remote healthcare AR,VR and smart cities have all been forgotten.  mmwave is no where to be seen or even heard of. It's qui...

Perspective from EU Research & Innovation (R&I) Days 2025

I thank the European Commission for organising European Research & Innovation (R&I) Days 2025 and giving me a chance to participate in the event discussing the future of European research. Europe has had a long and storied tradition of science with philosophers like Locke,Hobbes,Descartes,Spinoza laying the groundwork for a scientific revolution producing the finest scientists who pushed the boundaries of human knowledge ,ushered the industrial revolution and birthed the modern world. Yet today the EU finds itself at crossroads struggling to retain talent and capitalise on its inventions. Horizon Europe defines key enabling technologies that could propel the EU far ahead of its competitors. Past Records show that Europe has the capability to do it. Its achievements in electronics,semiconductors,wind energy and development of advanced composites like GLARE are a testament to its enterprising citizens. Europe has made strong contributions in open source software and while some of...

Remarks on the space policy conference 2025

  Happy to have participated in the space policy conference, 2025 held in New Delhi. The discussion revolved around spectrum allocation and the use of satellites in meeting the communication needs of tomorrow. The view among the speakers was pragmatic emphasising that while satellite communication will play an important part in the future of networking the role of terrestrial telecommunication will not be diminished especially as new advancements in fiber optics are happening rapidly. I concurred. While wireless communication remains the most important application of space technology I wondered if there is more to it? Can space policy look beyond weather,defense & telecommunication? Not too long ago NASA was doing just that. There was a period of rapid development in materials science ,cryogenics & electronics that influenced industries beyond the space sector. That era was characterised by industrial cross collaboration. New composites were developed ,new synthesis techniq...

A Celebration of India's Electronic Component Manufacturing Scheme milestones: Pairing policy incentives with turbulent Innovation

A Celebration of India's Electronic Component Manufacturing Scheme milestones: Pairing policy incentives with turbulent Innovation 17 Nov 2025 After the incredible success of semicon India this September, India cellular and electronics association organised a lunch celebrating the success of Electronic components and manufacturing scheme at the Taj in New Delhi.  Minister for Electronics & IT Ashwini Vaishnaw, was joined by Minister of State for Electronics & IT Jitin Prasad , Secretary S Krishnan, Secretary Sushil Pal and various industry leaders who are helping to build a semiconductor manufacturing ecosystem in India. It was a unique opportunity for me to observe the collective decision making that goes into developing policies shaping the industry. Through exchange of ideas the policy makers have mapped in great detail the components that need to be in place for the initiative to succeed. The list was quite comprehensive including PCBs, oscillators, lith...

Interdependence and strategic autonomy in a world that may no longer cooperate

9 Dec 2025  At the global boardroom organised by the financial times I got the opportunity to learn from decision makers & understand their approach to deal with a world that is facing constant disruption and where economic policy, geopolitics, technology, energy, and leadership are increasingly intertwined.  FT brought in a diverse set of speakers: Christine Lagarde — President, European Central Bank,Akash Palkhiwala —COO, Qualcomm,Eimear Bonner — CFO, Chevron Corporation,Janet Henry — Global Chief Economist, HSBC, Izabella Teixeira — Member, International Advisory Board & Former Brazilian Environment Minister ,Antti Häkkänen — Minister of Defence, Finland , Oana-Silvia Țoiu — Minister of Foreign Affairs, Romania, Lesley O’Connor — Founder & Executive Chair, SupergridEurope among others to speak on themes spanning economics, geopolitics, technology, energy, and governance.  Today in this interconnected world the decisions that one nation takes ...